- Home
- Find Gizmos
- Browse by Standard (USA)
- Oregon Standards
- Science: Grade 6
Oregon - Science: Grade 6
Standards | Adopted: 2022
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aenean tristique elit vel mauris lacinia accumsan. Vestibulum congue erat vitae enim imperdiet convallis. Nam eleifend nulla vel varius tincidunt. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos.
Suspendisse ornare dapibus mauris sit amet faucibus. Mauris non urna a urna ornare suscipit. Vestibulum pharetra sagittis odio. Praesent dictum dolor sed mattis imperdiet. Nam porttitor quam massa, molestie rutrum augue bibendum a.
6.ESS: : Earth & Space Science
6.ESS2: : Earth’s Systems
6.ESS2.4: : Develop a model to describe the cycling of water through Earth’s systems driven by energy from the sun and the force of gravity.

Water Cycle
Control the path of a drop of water as it travels through the water cycle. Many alternatives are presented at each stage. Determine how the water moves from one location to another, and learn how water resources are distributed in these locations. 5 Minute Preview
6.ESS2.5: : Collect data to provide evidence for how the motions and complex interactions of air masses results in changes in weather conditions.

Coastal Winds and Clouds
Observe daily weather conditions in a coastal region. Measure temperatures and wind speeds at any location and use this data to map convection currents that form during the day and night. Explain the origin of land breezes and sea breezes. 5 Minute Preview

Coastal Winds and Clouds - Metric
Observe daily weather conditions in a coastal region. Measure temperatures and wind speeds at any location and use this data to map convection currents that form during the day and night. Explain the origin of land breezes and sea breezes. 5 Minute Preview

Coriolis Effect
The Coriolis effect causes winds to be deflected as they move across Earth's surface, resulting in circular patterns of winds. This effect is caused by two factors, Earth's rotation and frame of reference. In the Coriolis Effect Gizmo, students will build their understanding of this phenomenon using the analogy of two kids playing catch: first on a train, then on a merry-go-round, and finally on Earth's surface. 5 Minute Preview

Hurricane Motion
Use data from up to three weather stations to predict the motion of a hurricane. The wind speed, wind direction, cloud cover and air pressure are provided for each station using standard weather symbols. 5 Minute Preview

Hurricane Motion - Metric
Use data from up to three weather stations to predict the motion of a hurricane. The wind speed, wind direction, cloud cover and air pressure are provided for each station using standard weather symbols. 5 Minute Preview

Weather Maps
Learn about standard symbols used in meteorology to construct weather maps. Rain, sleet, snow, temperature, cloud cover, wind speed and direction, and atmospheric pressure can all be recorded at two different weather stations on a map. Describe weather patterns characteristic of high-pressure systems, low-pressure systems, warm fronts, and cold fronts. 5 Minute Preview

Weather Maps - Metric
Learn about standard symbols used in meteorology to construct weather maps. Rain, sleet, snow, temperature, cloud cover, wind speed and direction, and atmospheric pressure can all be recorded at two different weather stations on a map. Describe weather patterns characteristic of high-pressure systems, low-pressure systems, warm fronts, and cold fronts. 5 Minute Preview
6.ESS2.6: : Develop and use a model to describe how unequal heating and rotation of the Earth cause patterns of atmospheric and oceanic circulation that determine regional climates.

Convection Cells
Explore the causes of convection by heating liquid and observing the resulting motion. The location and intensity of the heat source (or sources) can be varied, as well as the viscosity of the liquid. Use a probe to measure temperature and density in different areas and observe the motion of molecules in the liquid. Then, explore real-world examples of convection cells in Earth's mantle, oceans, and atmosphere. 5 Minute Preview

Coriolis Effect
The Coriolis effect causes winds to be deflected as they move across Earth's surface, resulting in circular patterns of winds. This effect is caused by two factors, Earth's rotation and frame of reference. In the Coriolis Effect Gizmo, students will build their understanding of this phenomenon using the analogy of two kids playing catch: first on a train, then on a merry-go-round, and finally on Earth's surface. 5 Minute Preview
6.ESS3: : Earth and Human Activity
6.ESS3.3: : Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.

GMOs and the Environment
In this follow-up to the Genetic Engineering Gizmo, explore how farmers can maximize yield while limiting ecosystem damage using genetically modified corn. Choose the corn type to plant and the amount of herbicide and insecticide to use, then measure corn yields and monitor wildlife populations and diversity. Observe the long-term effects of pollutants on a nearby stream ecosystem. 5 Minute Preview

Beat the Heat: Tackling Urban Heat Islands Using the Science of Energy - Middle School
Lake City's latest heat wave has more people in the hospital than ever before. Juan, a local student admitted to the hospital, lives in one of the hottest neighborhoods in the city. Students are hired as the city's Chief Heat Officer to investigate and solve the problem. As the Chief Heat Officer, students look at land uses, surface air temperatures, and building materials across Lake City. Students will develop a system model to test several design solutions and give the mayor a proposal to beat the heat. Video Preview

Microbiologist Mission: Reducing River Runoff and Pollution - Middle School
People are getting sick after swimming in the Dogwood River. The student acts as a microbiologist to monitor bacteria populations, construct a model of how pollution enters the river, and design a sustainable solution to minimize human impacts on the Dogwood River watershed. Video Preview

River Detective: The Case of the Missing Shad - Middle School
An important fish species, the American Shad, has disappeared from the James River in Virginia. Students take on the role of a junior River Watch member to investigate the shad population’s decline. They collect and analyze data about biotic and abiotic factors related to water quality and fish survival. Then students use this data to construct a model of cause-and-effect relationships in the James River watershed and design a solution to bring back this iconic fish. Video Preview

Smelling in the Rain: Designing Solutions to Improve Air Quality - Middle School
A respiratory physiologist is concerned about the number of asthma attacks in children within her community. On certain days, the number is higher than the respiratory physiologist might expect. She thinks something in the environment is causing more rescue inhaler use on those days. As an air quality engineer, students will work collaboratively with a respiratory physiologist to learn how some air pollutants are released directly from sources while others are formed through chemical reactions. Students will develop a system model to test design solutions to recommend a plan to help decrease air pollution in a community with a record number of asthma cases in children. Video Preview

Sound Off, Please!: Designing Solutions to Reduce Noise Pollution - Middle School
As an acoustic engineer, students will work with an urban planner to learn how noise pollution impacts a community. Students will develop a system model to test design solutions. Wave properties of sound and how sound interacts with different surfaces will be explored and used as evidence to reduce noise pollution. Video Preview
6.ESS3.5: : Ask clarifying questions based on evidence about the factors that have caused climate change over the past century.

Carbon Cycle
Follow the path of a carbon atom through the atmosphere, biosphere, hydrosphere, and geosphere. Manipulate a simplified model to see how human activities and other factors affect the amount of atmospheric carbon today and in the future. 5 Minute Preview

Greenhouse Effect
Within this simulated region of land, daytime's rising temperature and the falling temperature at night can be measured, along with heat flow in and out of the system. The level of greenhouse gases present in the atmosphere at any given time can be adjusted, allowing the long-term effects to be investigated. 5 Minute Preview

Greenhouse Effect - Metric
Within this simulated region of land, daytime's rising temperature and the falling temperature at night can be measured, along with heat flow in and out of the system. The amount of greenhouse gases present in the atmosphere can be adjusted through time, and the long-term effects can be investigated. 5 Minute Preview
6.LS: : Life Science
6.LS1: : From Molecules to Organisms: Structures and Processes
6.LS1.1: : Conduct an investigation to provide evidence that living things are made of cells; either one cell or many different numbers and types of cells.

Cell Types
Explore a wide variety of cells, from bacteria to human neurons, using a compound light microscope. Select a sample to study, then focus on the sample using the coarse and fine focus controls of the microscope. Compare the structures found in different cells, then perform tests to see if the sample is alive. 5 Minute Preview
6.LS1.2: : Develop and use a model to describe the function of a cell as a whole and ways parts of cells contribute to the function.

Cell Energy Cycle
Explore the processes of photosynthesis and respiration that occur within plant and animal cells. The cyclical nature of the two processes can be constructed visually, and the simplified photosynthesis and respiration formulae can be balanced. 5 Minute Preview

Cell Structure
Select a sample cell from an animal, plant, or bacterium and view the cell under a microscope. Select each organelle on the image to learn more about its structure and function. Closeup views and animations of certain organelles is provided. 5 Minute Preview

Cell Types
Explore a wide variety of cells, from bacteria to human neurons, using a compound light microscope. Select a sample to study, then focus on the sample using the coarse and fine focus controls of the microscope. Compare the structures found in different cells, then perform tests to see if the sample is alive. 5 Minute Preview

Osmosis
Adjust the concentration of a solute on either side of a membrane in a cell and observe the system as it adjusts to the conditions through osmosis. The initial concentration of the solute can be manipulated, along with the volume of the cell. 5 Minute Preview
6.LS1.3: : Construct an explanation supported by evidence for how the body is composed of interacting systems consisting of cells, tissues, and organs working together to maintain homeostasis.

Cell Types
Explore a wide variety of cells, from bacteria to human neurons, using a compound light microscope. Select a sample to study, then focus on the sample using the coarse and fine focus controls of the microscope. Compare the structures found in different cells, then perform tests to see if the sample is alive. 5 Minute Preview

Circulatory System
Trace the path of blood through a beating heart and the network of blood vessels that supplies blood to the body. Take blood samples from different blood vessels to observe blood cells and measure the levels of oxygen, carbon dioxide, sugar, and urea. 5 Minute Preview

Digestive System
Digestion is a complex process, involving a wide variety of organs and chemicals that work together to break down food, absorb nutrients, and eliminate wastes. But have you ever wondered what would happen if some of those organs were eliminated, or if the sequence was changed? Can the digestive system be improved? Find out by designing your own digestive system with the Digestive System Gizmo. 5 Minute Preview

Frog Dissection
Use a scalpel, forceps, and pins to dissect realistic male and female frogs. Organs can be removed and placed into organ system diagrams. Once the dissections are complete, the frog organ systems can be compared. Zooming, rotating, and panning tools are available to examine the frog from any angle. 5 Minute Preview

Muscles and Bones
See how muscles, bones, and connective tissue work together to allow movement. Observe how muscle contraction arises from the interactions of thin and thick filaments in muscle cells. Using what you have learned, construct an arm that can lift a weight or throw a ball. Connective tissue, muscle composition, bone length, and tendon insertion point can all be manipulated to create an arm to lift the heaviest weight or throw a ball the fastest. 5 Minute Preview

Senses
Everything we know about the world comes through our senses: sight, hearing, touch, taste, and smell. In the Senses Gizmo, explore how stimuli are detected by specialized cells, transmitted through nerves, and processed in the brain. 5 Minute Preview
6.LS1.4: : Use argument based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants respectively.

Flower Pollination
Observe the steps of pollination and fertilization in flowering plants. Help with many parts of the process by dragging pollen grains to the stigma, dragging sperm to the ovules, and removing petals as the fruit begins to grow. Quiz yourself when you are done by dragging vocabulary words to the correct plant structure. 5 Minute Preview

Honeybee Hive
Explore life in the hive by meeting workers, drones, and the queen bee herself! Visit flower patches to determine the best sources of food, and then perform a waggle dance to let the other bees know where to go. Can you help the bees find enough food to save the hive? 5 Minute Preview

Fruit Production - Middle School
As an agricultural scientist, students help a strawberry farmer who is having problems with low fruit production. Students learn about the factors involved in fruit production including plant nutrients, pollination and bees, and the interaction with the environment. Video Preview
6.LS1.5: : Construct a scientific explanation based on evidence for how environmental and genetic factors influence the growth of organisms.

Fast Plants® 1 - Growth and Genetics
Grow Wisconsin Fast Plants® in a simulated lab environment. Explore the life cycles of these plants and how their growth is influenced by light, water, and crowding. Practice pollinating the plants using bee sticks, then observe the traits of the offspring plants. Use Punnett squares to model the inheritance of genes for stem color and leaf color for these plants. 5 Minute Preview

Growing Plants
Investigate the growth of three common garden plants: tomatoes, beans, and turnips. You can change the amount of light each plant gets, the amount of water added each day, and the type of soil the seed is planted in. Observe the effect of each variable on plant height, plant mass, leaf color and leaf size. Determine what conditions produce the tallest and healthiest plants. Height and mass data are displayed on tables and graphs. 5 Minute Preview

Inheritance
Create aliens with different traits and breed them to produce offspring. Determine which traits are passed down from parents to offspring and which traits are acquired. Offspring can be stored for future experiments or released. 5 Minute Preview

Measuring Trees
Measure the height, diameter, and circumference of trees in a forest. Count growth rings to determine the age of each tree. Grow the trees for several years and investigate how growth is affected by precipitation. 5 Minute Preview

Seed Germination
Perform experiments with several seed types to see what conditions yield the highest germination (sprouting) rate. Three different types of seeds can be studied, and the temperature, water and light in the germination chamber can be controlled. No two trials will have the same result so repeated trials are recommended. 5 Minute Preview

Temperature and Sex Determination
Observe the sex ratios of birds and geckos as they hatch in an incubator. Vary the temperature of the incubator and measure the percentages of male and female hatchlings to determine if temperature has an effect on sex. 5 Minute Preview

Temperature and Sex Determination - Metric
Observe the sex ratios of birds and geckos as they hatch in an incubator. Vary the temperature of the incubator and measure the percentages of male and female hatchlings to determine if temperature has an effect on sex. 5 Minute Preview

Heredity and Traits - Middle School
As a bee scientist, students help a honey farm that has low honey production due to wasps. Students learn about bees, heredity and traits to determine which traits will help the bees defend their hives against the wasps. They then pick a new queen bee to pass on these traits to the bee colony. Video Preview
6.LS1.8: : Gather and synthesize information that sensory receptors respond to stimuli by sending messages to the brain for immediate behavior or storage as memories.

Eyes and Vision 2 - Focusing Light
Once light enters the eye, it must be focused on the retina. Manipulate the pupil diameter to regulate the amount of light that enters then eye, then change the lens shape to focus light. Determine the changes in lens shape needed to maintain focus as the object distance changes. This is a followup to the Eyes and Vision 1 - Seeing Colors lesson. 5 Minute Preview

Eyes and Vision 3 - Sensing Light
Observe how photoreceptors on the retina are stimulated by different colors of light. Determine that cone cells are stimulated by specific colors of light and enable us to see color, while rod cells are stimulated by various colors and do not contribute to color vision. Experiment by varying the percentage of rod and cone cells in normal and dim light to see how rod cells help with night vision. 5 Minute Preview

Reaction Time 1 (Graphs and Statistics)
Test your reaction time by catching a falling ruler or clicking a target. Create a data set of experiment results, and calculate the range, mode, median, and mean of your data. Data can be displayed on a list, table, bar graph or dot plot. The Reaction Time 1 Student Exploration focuses on range, mode, and median. 5 Minute Preview

Senses
Everything we know about the world comes through our senses: sight, hearing, touch, taste, and smell. In the Senses Gizmo, explore how stimuli are detected by specialized cells, transmitted through nerves, and processed in the brain. 5 Minute Preview

Animal Group Behavior - Middle School
A farmer in Africa is having problems with elephants eating her corn and cotton crops. As a wildlife biologist, students learn about animal group behavior and relationships of elephants and humans with bees. Students collect data from the farm and elephants to hypothesize and test solutions that will protect the crops without hurting the elephants. Video Preview
6.LS3: : Heredity: Inheritance and Variation of Traits
6.LS3.2: : Develop and use models to describe why asexual reproduction results in offspring with identical genetic information and sexual reproduction results in offspring with genetic variation.

Chicken Genetics
Breed "pure" chickens with known genotypes that exhibit specific feather colors, and learn how traits are passed on via codominant genes. Chickens can be stored in cages for future breeding, and the statistics of feather color are reported every time the chickens breed. Punnett squares can be used to predict results. 5 Minute Preview

Fast Plants® 1 - Growth and Genetics
Grow Wisconsin Fast Plants® in a simulated lab environment. Explore the life cycles of these plants and how their growth is influenced by light, water, and crowding. Practice pollinating the plants using bee sticks, then observe the traits of the offspring plants. Use Punnett squares to model the inheritance of genes for stem color and leaf color for these plants. 5 Minute Preview

Fast Plants® 2 - Mystery Parent
In this follow-up to Fast Plants® 1 - Growth and Genetics, continue to explore inheritance of traits in Wisconsin Fast Plants. Infer the genotype of a "mystery P2 parent" of a set of Fast Plants based on the traits of the P1, F1, and F2 plants. Then create designer Fast Plants by selectively breeding plants with desired traits. 5 Minute Preview

Inheritance
Create aliens with different traits and breed them to produce offspring. Determine which traits are passed down from parents to offspring and which traits are acquired. Offspring can be stored for future experiments or released. 5 Minute Preview

Mouse Genetics (One Trait)
Breed "pure" mice with known genotypes that exhibit specific fur colors, and learn how traits are passed on via dominant and recessive genes. Mice can be stored in cages for future breeding, and the statistics of fur color are reported every time a pair of mice breed. Punnett squares can be used to predict results. 5 Minute Preview

Mouse Genetics (Two Traits)
Breed "pure" mice with known genotypes that exhibit specific fur and eye colors, and learn how traits are passed on via dominant and recessive genes. Mice can be stored in cages for future breeding, and the statistics of fur and eye color are reported every time a pair of mice breed. Punnett squares can be used to predict results. 5 Minute Preview
6.PS: : Physical Science
6.PS3: : Energy
6.PS3.3: : Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy transfer.

Feel the Heat
Have you ever used a glove warmer to keep your hands warm? How about an instant cold pack to treat an injury? In the Feel the Heat Gizmo, create your own hot and cold packs using various salts dissolved in water and different bag materials. Learn about exothermic and endothermic processes and how energy is absorbed or released when bonds are broken and new bonds form. 5 Minute Preview

Beat the Heat: Tackling Urban Heat Islands Using the Science of Energy - Middle School
Lake City's latest heat wave has more people in the hospital than ever before. Juan, a local student admitted to the hospital, lives in one of the hottest neighborhoods in the city. Students are hired as the city's Chief Heat Officer to investigate and solve the problem. As the Chief Heat Officer, students look at land uses, surface air temperatures, and building materials across Lake City. Students will develop a system model to test several design solutions and give the mayor a proposal to beat the heat. Video Preview

Protecting Permafrost: Heat Transfer Highway - Middle School
Thawing permafrost threatens the stability of critical infrastructure in the Arctic community of Frostville, Alaska. Students take on the role of a civil engineer to design heat transfer solutions to protect permafrost in a warming climate. Video Preview
6.PS3.4: : Plan an investigation to determine the relationships among the energy transferred, the type of matter, the mass, and the change in the average kinetic energy of the particles as measured by the temperature of the sample.

Calorimetry Lab
Investigate how calorimetry can be used to find relative specific heat values when different substances are mixed with water. Modify initial mass and temperature values to see effects on the system. One or any combination of the substances can be mixed with water. A dynamic graph (temperature vs. time) shows temperatures of the individual substances after mixing. 5 Minute Preview

Energy Conversion in a System
A falling cylinder is attached to a rotating propeller that stirs and heats the water in a beaker. The mass and height of the cylinder, as well as the quantity and initial temperature of water can be adjusted. The temperature of the water is measured as energy is converted from one form to another. 5 Minute Preview

Heat Transfer by Conduction
An insulated beaker of hot water is connected to a beaker of cold water with a conducting bar, and over time the temperatures of the beakers equalize as heat is transferred through the bar. Four materials (aluminum, copper, steel, and glass) are available for the bar. 5 Minute Preview

Phases of Water
Heat or cool a container of water and observe the phase changes that take place. Use a magnifying glass to observe water molecules as a solid, liquid, or gas. Compare the volumes of the three phases of water. 5 Minute Preview
6.PS3.5: : Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.

Air Track
Adjust the mass and velocity of two gliders on a frictionless air track. Measure the velocity, momentum, and kinetic energy of each glider as they approach each other and collide. Collisions can be elastic or inelastic. 5 Minute Preview

Energy Conversion in a System
A falling cylinder is attached to a rotating propeller that stirs and heats the water in a beaker. The mass and height of the cylinder, as well as the quantity and initial temperature of water can be adjusted. The temperature of the water is measured as energy is converted from one form to another. 5 Minute Preview

Sled Wars
Explore acceleration, speed, momentum, and energy by sending a sled down a hill into a group of snowmen. The starting height and mass of the sled can be changed, as well as the number of snowmen. In the Two sleds scenario, observe collisions between sleds of different masses and starting heights. 5 Minute Preview
Correlation last revised: 7/15/2025
About STEM Cases
Students assume the role of a scientist trying to solve a real world problem. They use scientific practices to collect and analyze data, and form and test a hypothesis as they solve the problems.

Each STEM Case uses realtime reporting to show live student results.
Introduction to the Heatmap

STEM Cases take between 30-90 minutes for students to complete, depending on the case.

Student progress is automatically saved so that STEM Cases can be completed over multiple sessions.

Multiple grade-appropriate versions, or levels, exist for each STEM Case.

Each STEM Case level has an associated Handbook. These are interactive guides that focus on the science concepts underlying the case.
How Free Gizmos Work

Start teaching with 20-40 Free Gizmos. See the full list.

Access lesson materials for Free Gizmos including teacher guides, lesson plans, and more.

All other Gizmos are limited to a 5 Minute Preview and can only be used for 5 minutes a day.

Free Gizmos change each semester. The new collection will be available Sep 01, 2022.
Find Your Solution
Start playing, exploring and learning today with a free account. Or contact us for a quote or demo.
Sign Up For Free Get a Quote