Skip to main content Skip to main navigation Skip to footer
Login
Student Login
Educator Login
Sign Up For Free
Gizmos home page Gizmos home page
Gizmos home page
  • Find Gizmos
    
                                                
    See Full Search Results
    • FREE Gizmos
    • NEW Releases
    • STEM Cases
    • Investigations
    • Browse by Standard
    • Browse by Grade & Topic
    • Browse by Core Curriculum
  • About Gizmos
    • What's a Gizmo?
    • About STEM Cases
    • Take a Tour
    • The Research Behind Gizmos
    • How to Get Gizmos
    • Testimonials
  • Research
    • The Impact of Gizmos on Student Achievement
  • Support
    • Professional Development Overview
    • Meet the Team
    • Course Catalog
    • Help Center
    • Site Status
  • Resources
    • Gizmos Educator Resource Hub
    • Success Stories
    • Insights
  • Get More Info
    • Sign Up for Free
    • Request Purchasing Info
    • Request a Demo
    • Contact Support
  • Login
    • Student Login
    • Educator Login
  • Sign Up For Free
  • Home
  • Find Gizmos
  • Browse by Standard (USA)
  • Iowa Standards
  • Science: 6th Grade

Iowa - Science: 6th Grade

Academic Standards | Adopted: 2025

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aenean tristique elit vel mauris lacinia accumsan. Vestibulum congue erat vitae enim imperdiet convallis. Nam eleifend nulla vel varius tincidunt. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. 

Suspendisse ornare dapibus mauris sit amet faucibus. Mauris non urna a urna ornare suscipit. Vestibulum pharetra sagittis odio. Praesent dictum dolor sed mattis imperdiet. Nam porttitor quam massa, molestie rutrum augue bibendum a.

This correlation lists the recommended Gizmos for this state's curriculum standards. Click any Gizmo title below for more information.

6-PS1-4: : Develop a model that predicts and describes changes in particle motion, temperature, and state of a pure substance when thermal energy is added or removed.


6-PS1-4: : Develop a model that predicts and describes changes in particle motion, temperature, and state of a pure substance when thermal energy is added or removed.

Screenshot of Melting Points

Melting Points

Every substance has unique transition points, or temperatures at which one phase (solid, liquid, or gas) transitions to another. Use a realistic melting point apparatus to measure the melting points, boiling points, and/or sublimation points of different substances and observe what these phase changes look like at the microscopic level. Based on the transition points, make inferences about the relative strengths of the forces holding these substances together. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Phase Changes

Phase Changes

Explore the relationship between molecular motion, temperature, and phase changes. Compare the molecular structure of solids, liquids, and gases. Graph temperature changes as ice is melted and water is boiled. Find the effect of altitude on phase changes. The starting temperature, ice volume, altitude, and rate of heating or cooling can be adjusted. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Phases of Water

Phases of Water

Heat or cool a container of water and observe the phase changes that take place. Use a magnifying glass to observe water molecules as a solid, liquid, or gas. Compare the volumes of the three phases of water. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Temperature and Particle Motion

Temperature and Particle Motion

Observe the movement of particles of an ideal gas at a variety of temperatures. A histogram showing the Maxwell-Boltzmann velocity distribution is shown, and the most probable velocity, mean velocity, and root mean square velocity can be calculated. Molecules of different gases can be compared. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Chemical and Physical Changes - Middle School

Chemical and Physical Changes - Middle School

The Secret Service recently arrested suspects accused of counterfeiting coins from 1915 valued at $50,000 each. The students act as a forensic scientist to investigate the crime scene and the evidence. Students learn about chemical and physical changes to recreate the methods used to make the coins as evidence for the trial. Video Preview


Lesson Info
STEM Cases
Screenshot of Protecting Permafrost: Heat Transfer Highway - Middle School

Protecting Permafrost: Heat Transfer Highway - Middle School

Thawing permafrost threatens the stability of critical infrastructure in the Arctic community of Frostville, Alaska. Students take on the role of a civil engineer to design heat transfer solutions to protect permafrost in a warming climate. Video Preview


Lesson Info
STEM Cases

6-PS1-6: : Undertake a design project to construct, test, and modify a device that either releases or absorbs thermal energy by chemical processes.


6-PS1-6: : Undertake a design project to construct, test, and modify a device that either releases or absorbs thermal energy by chemical processes.

Screenshot of Feel the Heat

Feel the Heat

Have you ever used a glove warmer to keep your hands warm? How about an instant cold pack to treat an injury? In the Feel the Heat Gizmo, create your own hot and cold packs using various salts dissolved in water and different bag materials. Learn about exothermic and endothermic processes and how energy is absorbed or released when bonds are broken and new bonds form. 5 Minute Preview


Lesson Info
Launch Gizmo

6-PS3-3: : Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy transfer.


6-PS3-3: : Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy transfer.

Screenshot of Feel the Heat

Feel the Heat

Have you ever used a glove warmer to keep your hands warm? How about an instant cold pack to treat an injury? In the Feel the Heat Gizmo, create your own hot and cold packs using various salts dissolved in water and different bag materials. Learn about exothermic and endothermic processes and how energy is absorbed or released when bonds are broken and new bonds form. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Beat the Heat: Tackling Urban Heat Islands Using the Science of Energy - Middle School

Beat the Heat: Tackling Urban Heat Islands Using the Science of Energy - Middle School

Lake City's latest heat wave has more people in the hospital than ever before. Juan, a local student admitted to the hospital, lives in one of the hottest neighborhoods in the city. Students are hired as the city's Chief Heat Officer to investigate and solve the problem. As the Chief Heat Officer, students look at land uses, surface air temperatures, and building materials across Lake City. Students will develop a system model to test several design solutions and give the mayor a proposal to beat the heat. Video Preview


Lesson Info
STEM Cases
Screenshot of Protecting Permafrost: Heat Transfer Highway - Middle School

Protecting Permafrost: Heat Transfer Highway - Middle School

Thawing permafrost threatens the stability of critical infrastructure in the Arctic community of Frostville, Alaska. Students take on the role of a civil engineer to design heat transfer solutions to protect permafrost in a warming climate. Video Preview


Lesson Info
STEM Cases

6-PS4-1: : Use mathematical representations to describe a simple model for waves that includes how the amplitude of a wave is related to the energy in a wave.


6-PS4-1: : Use mathematical representations to describe a simple model for waves that includes how the amplitude of a wave is related to the energy in a wave.

Screenshot of Waves

Waves

Observe and measure transverse, longitudinal, and combined waves on a model of a spring moved by a hand. Adjust the amplitude and frequency of the hand, and the tension and density of the spring. The speed and power of the waves is reported, and the wavelength and amplitude can be measured. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Sound Off, Please!: Designing Solutions to Reduce Noise Pollution - Middle School

Sound Off, Please!: Designing Solutions to Reduce Noise Pollution - Middle School

As an acoustic engineer, students will work with an urban planner to learn how noise pollution impacts a community. Students will develop a system model to test design solutions. Wave properties of sound and how sound interacts with different surfaces will be explored and used as evidence to reduce noise pollution. Video Preview


Lesson Info
STEM Cases

6-PS4-2: : Develop and use a model to describe that waves are reflected, absorbed, or transmitted through various materials.


6-PS4-2: : Develop and use a model to describe that waves are reflected, absorbed, or transmitted through various materials.

Screenshot of Basic Prism

Basic Prism

Shine white light or a single-color beam through a prism. Explore how a prism refracts light and investigate the factors that affect the amount of refraction. The index of refraction of the prism, width of the prism, prism angle, light angle, and light wavelength can be adjusted. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Color Absorption

Color Absorption

Mix the primary colors of light by using red, green, and blue lights. Use pieces of colored glass to filter the light and create a wide variety of colors. Determine how light is absorbed and transmitted by each color of glass. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Earthquakes 1 - Recording Station

Earthquakes 1 - Recording Station

Using an earthquake recording station, learn how to determine the distance between the station and an earthquake based on the time difference between the arrival of the primary and secondary seismic waves. Use this data to find the epicenter in the Earthquakes 2 - Location of Epicenter Gizmo. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Eyes and Vision 1 - Seeing Color

Eyes and Vision 1 - Seeing Color

Observe how different colors of light are reflected or absorbed by colored objects. Determine that white light is a combination of different colors of light, and that one or more component colors may be reflected when white light is shone on an object. Understand that we see an object when light reflected from the object enters our eye. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Heat Absorption

Heat Absorption

Shine a powerful flashlight on a variety of materials, and measure how quickly each material heats up. See how the light angle, light color, type of material, and material color affect heating. A glass cover can be added to simulate a greenhouse. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Laser Reflection

Laser Reflection

Point a laser at a mirror and compare the angle of the incoming beam to the angle of reflection. A protractor can be used to measure the angles of incidence and reflection, and the angle of the mirror can be adjusted. A beam splitter can be used to split the beam. Both plane and irregular mirrors can be used. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Longitudinal Waves

Longitudinal Waves

Observe the propagation of longitudinal (compression) waves in a closed or open tube with evenly-spaced dividers. The strength and frequency of the waves can be manipulated, or waves can be observed as individual pulses. Compare the movement of dividers to graphs of displacement, velocity, acceleration and pressure. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Radiation

Radiation

Use a powerful flashlight to pop a kernel of popcorn. A lens focuses light on the kernel. The temperature of the filament and the distance between the flashlight and lens can be changed. Several obstacles can be placed between the flashlight and the popcorn. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Refraction

Refraction

Determine the angle of refraction for a light beam moving from one medium to another. The angle of incidence and each index of refraction can be varied. Using the tools provided, the angle of refraction can be measured, and the wavelength and frequency of the waves in each substance can be compared as well. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Ripple Tank

Ripple Tank

Study wave motion, diffraction, interference, and refraction in a simulated ripple tank. A wide variety of scenarios can be chosen, including barriers with one or two gaps, multiple wave sources, reflecting barriers, or submerged rocks. The wavelength and strength of waves can be adjusted, as well as the amount of damping in the tank. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Waves

Waves

Observe and measure transverse, longitudinal, and combined waves on a model of a spring moved by a hand. Adjust the amplitude and frequency of the hand, and the tension and density of the spring. The speed and power of the waves is reported, and the wavelength and amplitude can be measured. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Beat the Heat: Tackling Urban Heat Islands Using the Science of Energy - Middle School

Beat the Heat: Tackling Urban Heat Islands Using the Science of Energy - Middle School

Lake City's latest heat wave has more people in the hospital than ever before. Juan, a local student admitted to the hospital, lives in one of the hottest neighborhoods in the city. Students are hired as the city's Chief Heat Officer to investigate and solve the problem. As the Chief Heat Officer, students look at land uses, surface air temperatures, and building materials across Lake City. Students will develop a system model to test several design solutions and give the mayor a proposal to beat the heat. Video Preview


Lesson Info
STEM Cases
Screenshot of Shake it Off: Understanding Wave Properties to Develop Earthquake Alert Systems - Middle School

Shake it Off: Understanding Wave Properties to Develop Earthquake Alert Systems - Middle School

The Bay Area of California experiences frequent earthquakes. Earthquakes are unpredictable and cause enormous damage that leads to casualties. Students take on the role of an earth scientist to investigate the properties of seismic waves to develop an early warning system that warns citizens of an incoming earthquake and reduces casualties. Video Preview


Lesson Info
STEM Cases
Screenshot of Sound Off, Please!: Designing Solutions to Reduce Noise Pollution - Middle School

Sound Off, Please!: Designing Solutions to Reduce Noise Pollution - Middle School

As an acoustic engineer, students will work with an urban planner to learn how noise pollution impacts a community. Students will develop a system model to test design solutions. Wave properties of sound and how sound interacts with different surfaces will be explored and used as evidence to reduce noise pollution. Video Preview


Lesson Info
STEM Cases

6-LS1-1: : Conduct an investigation to provide evidence that living things are made of cells; either one cell or many, different numbers and types of cells.


6-LS1-1: : Conduct an investigation to provide evidence that living things are made of cells; either one cell or many, different numbers and types of cells.

Screenshot of Cell Types

Cell Types

Explore a wide variety of cells, from bacteria to human neurons, using a compound light microscope. Select a sample to study, then focus on the sample using the coarse and fine focus controls of the microscope. Compare the structures found in different cells, then perform tests to see if the sample is alive. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Embryo Development

Embryo Development

Explore how a fertilized cell develops into an embryo, a fetus, and eventually an adult organism. Compare embryo development in different vertebrate species and try to guess which embryo belongs to each species. Use dyes to trace the differentiation of cells during early embryo development, from the zygote to the neurula. 5 Minute Preview


Lesson Info
Launch Gizmo

6-LS1-2: : Develop and use a model to describe the function of a cell as a whole and ways parts of cells contribute to the function.


6-LS1-2: : Develop and use a model to describe the function of a cell as a whole and ways parts of cells contribute to the function.

Screenshot of Cell Energy Cycle

Cell Energy Cycle

Explore the processes of photosynthesis and respiration that occur within plant and animal cells. The cyclical nature of the two processes can be constructed visually, and the simplified photosynthesis and respiration formulae can be balanced. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Cell Structure

Cell Structure

Select a sample cell from an animal, plant, or bacterium and view the cell under a microscope. Select each organelle on the image to learn more about its structure and function. Closeup views and animations of certain organelles is provided. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Cell Types

Cell Types

Explore a wide variety of cells, from bacteria to human neurons, using a compound light microscope. Select a sample to study, then focus on the sample using the coarse and fine focus controls of the microscope. Compare the structures found in different cells, then perform tests to see if the sample is alive. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Osmosis

Osmosis

Adjust the concentration of a solute on either side of a membrane in a cell and observe the system as it adjusts to the conditions through osmosis. The initial concentration of the solute can be manipulated, along with the volume of the cell. 5 Minute Preview


Lesson Info
Launch Gizmo

6-LS1-3: : Use arguments supported by evidence for how the body is a system of interacting subsystems composed of groups of cells.


6-LS1-3: : Use arguments supported by evidence for how the body is a system of interacting subsystems composed of groups of cells.

Screenshot of Cell Types

Cell Types

Explore a wide variety of cells, from bacteria to human neurons, using a compound light microscope. Select a sample to study, then focus on the sample using the coarse and fine focus controls of the microscope. Compare the structures found in different cells, then perform tests to see if the sample is alive. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Circulatory System

Circulatory System

Trace the path of blood through a beating heart and the network of blood vessels that supplies blood to the body. Take blood samples from different blood vessels to observe blood cells and measure the levels of oxygen, carbon dioxide, sugar, and urea. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Digestive System

Digestive System

Digestion is a complex process, involving a wide variety of organs and chemicals that work together to break down food, absorb nutrients, and eliminate wastes. But have you ever wondered what would happen if some of those organs were eliminated, or if the sequence was changed? Can the digestive system be improved? Find out by designing your own digestive system with the Digestive System Gizmo. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Frog Dissection

Frog Dissection

Use a scalpel, forceps, and pins to dissect realistic male and female frogs. Organs can be removed and placed into organ system diagrams. Once the dissections are complete, the frog organ systems can be compared. Zooming, rotating, and panning tools are available to examine the frog from any angle. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Muscles and Bones

Muscles and Bones

See how muscles, bones, and connective tissue work together to allow movement. Observe how muscle contraction arises from the interactions of thin and thick filaments in muscle cells. Using what you have learned, construct an arm that can lift a weight or throw a ball. Connective tissue, muscle composition, bone length, and tendon insertion point can all be manipulated to create an arm to lift the heaviest weight or throw a ball the fastest. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Senses

Senses

Everything we know about the world comes through our senses: sight, hearing, touch, taste, and smell. In the Senses Gizmo, explore how stimuli are detected by specialized cells, transmitted through nerves, and processed in the brain. 5 Minute Preview


Lesson Info
Launch Gizmo

6-LS1-8: : Gather and synthesize information that sensory receptors respond to stimuli by sending messages to the brain for immediate behavior or storage as memories.


6-LS1-8: : Gather and synthesize information that sensory receptors respond to stimuli by sending messages to the brain for immediate behavior or storage as memories.

Screenshot of Eyes and Vision 2 - Focusing Light

Eyes and Vision 2 - Focusing Light

Once light enters the eye, it must be focused on the retina. Manipulate the pupil diameter to regulate the amount of light that enters then eye, then change the lens shape to focus light. Determine the changes in lens shape needed to maintain focus as the object distance changes. This is a followup to the Eyes and Vision 1 - Seeing Colors lesson. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Eyes and Vision 3 - Sensing Light

Eyes and Vision 3 - Sensing Light

Observe how photoreceptors on the retina are stimulated by different colors of light. Determine that cone cells are stimulated by specific colors of light and enable us to see color, while rod cells are stimulated by various colors and do not contribute to color vision. Experiment by varying the percentage of rod and cone cells in normal and dim light to see how rod cells help with night vision. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Reaction Time 1 (Graphs and Statistics)

Reaction Time 1 (Graphs and Statistics)

Test your reaction time by catching a falling ruler or clicking a target. Create a data set of experiment results, and calculate the range, mode, median, and mean of your data. Data can be displayed on a list, table, bar graph or dot plot. The Reaction Time 1 Student Exploration focuses on range, mode, and median. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Senses

Senses

Everything we know about the world comes through our senses: sight, hearing, touch, taste, and smell. In the Senses Gizmo, explore how stimuli are detected by specialized cells, transmitted through nerves, and processed in the brain. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Animal Group Behavior - Middle School

Animal Group Behavior - Middle School

A farmer in Africa is having problems with elephants eating her corn and cotton crops. As a wildlife biologist, students learn about animal group behavior and relationships of elephants and humans with bees. Students collect data from the farm and elephants to hypothesize and test solutions that will protect the crops without hurting the elephants. Video Preview


Lesson Info
STEM Cases

6-ESS2-1: : Develop a model to describe the cycling of Earth’s materials and the flow of energy that drives this process.


6-ESS2-1: : Develop a model to describe the cycling of Earth’s materials and the flow of energy that drives this process.

Screenshot of Carbon Cycle

Carbon Cycle

Follow the path of a carbon atom through the atmosphere, biosphere, hydrosphere, and geosphere. Manipulate a simplified model to see how human activities and other factors affect the amount of atmospheric carbon today and in the future. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Plate Tectonics

Plate Tectonics

Move the Earth's crust at various locations to observe the effects of the motion of the tectonic plates, including volcanic eruptions. Information about each of the major types of plate boundaries is shown, along with their locations on Earth. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Rock Cycle

Rock Cycle

Play the role of a piece of rock moving through the rock cycle. Select a starting location and follow many possible paths throughout the cycle. Learn how rocks are formed, weathered, eroded, and reformed as they move from Earth's surface to locations deep within the crust. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Weathering

Weathering

Weathering is the breakdown of rock at Earth's surface through physical or chemical means. Students will learn about the different types of mechanical and chemical weathering, then use a simulation to model the effects of weathering on different types of rocks in varying climate conditions. 5 Minute Preview


Lesson Info
Launch Gizmo

6-ESS2-2: : Construct an explanation based on evidence for how geoscience processes have changed Earth’s surface at varying time and spatial scales.


6-ESS2-2: : Construct an explanation based on evidence for how geoscience processes have changed Earth’s surface at varying time and spatial scales.

Screenshot of Erosion Rates

Erosion Rates

Explore erosion in a simulated 3D environment. Observe how the landscape evolves over time as it is shaped by the forces of flowing water. Vary the initial landscape, rock type, precipitation amount, average temperature, and vegetation and measure how each variable affects the rate of erosion and resulting landscape features. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Plate Tectonics

Plate Tectonics

Move the Earth's crust at various locations to observe the effects of the motion of the tectonic plates, including volcanic eruptions. Information about each of the major types of plate boundaries is shown, along with their locations on Earth. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of River Erosion

River Erosion

Explore how river erosion affects landscapes in the short term and over long periods of time. Describe the features of mountain streams and meandering rivers, and use a floating barrel to estimate current speed. Witness the changes that occur as mountain streams erode downward and meandering rivers erode from side to side. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Rock Cycle

Rock Cycle

Play the role of a piece of rock moving through the rock cycle. Select a starting location and follow many possible paths throughout the cycle. Learn how rocks are formed, weathered, eroded, and reformed as they move from Earth's surface to locations deep within the crust. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Weathering

Weathering

Weathering is the breakdown of rock at Earth's surface through physical or chemical means. Students will learn about the different types of mechanical and chemical weathering, then use a simulation to model the effects of weathering on different types of rocks in varying climate conditions. 5 Minute Preview


Lesson Info
Launch Gizmo

6-ESS2-3: : Analyze and interpret data on the distribution of fossils and rocks, continental shapes, and seafloor structures to provide evidence of the past plate motions.


6-ESS2-3: : Analyze and interpret data on the distribution of fossils and rocks, continental shapes, and seafloor structures to provide evidence of the past plate motions.

Screenshot of Building Pangaea

Building Pangaea

In 1915, Alfred Wegener proposed that all of Earth's continents were once joined in an ancient supercontinent he called Pangaea. Wegener's idea of moving continents led to the modern theory of plate tectonics. Create your own version of Pangaea by fitting Earth's landmasses together like puzzle pieces. Use evidence from fossils, rocks, and glaciers to refine your map. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Plate Tectonics

Plate Tectonics

Move the Earth's crust at various locations to observe the effects of the motion of the tectonic plates, including volcanic eruptions. Information about each of the major types of plate boundaries is shown, along with their locations on Earth. 5 Minute Preview


Lesson Info
Launch Gizmo

6-ESS3-1: : Construct a scientific explanation based on evidence for how the uneven distributions of Earth’s mineral, energy, and groundwater resources are the result of past and current geoscience processes.


6-ESS3-1: : Construct a scientific explanation based on evidence for how the uneven distributions of Earth’s mineral, energy, and groundwater resources are the result of past and current geoscience processes.

Screenshot of Carbon Cycle

Carbon Cycle

Follow the path of a carbon atom through the atmosphere, biosphere, hydrosphere, and geosphere. Manipulate a simplified model to see how human activities and other factors affect the amount of atmospheric carbon today and in the future. 5 Minute Preview


Lesson Info
Launch Gizmo

6-ESS3-2: : Analyze and interpret data on natural hazards to forecast future catastrophic events and inform the development of technologies to mitigate their effects.


6-ESS3-2: : Analyze and interpret data on natural hazards to forecast future catastrophic events and inform the development of technologies to mitigate their effects.

Screenshot of Hurricane Motion

Hurricane Motion

Use data from up to three weather stations to predict the motion of a hurricane. The wind speed, wind direction, cloud cover and air pressure are provided for each station using standard weather symbols. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Hurricane Motion - Metric

Hurricane Motion - Metric

Use data from up to three weather stations to predict the motion of a hurricane. The wind speed, wind direction, cloud cover and air pressure are provided for each station using standard weather symbols. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Shake it Off: Understanding Wave Properties to Develop Earthquake Alert Systems - Middle School

Shake it Off: Understanding Wave Properties to Develop Earthquake Alert Systems - Middle School

The Bay Area of California experiences frequent earthquakes. Earthquakes are unpredictable and cause enormous damage that leads to casualties. Students take on the role of an earth scientist to investigate the properties of seismic waves to develop an early warning system that warns citizens of an incoming earthquake and reduces casualties. Video Preview


Lesson Info
STEM Cases

6-ETS1-1: : Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, considering relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.


6-ETS1-1: : Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, considering relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.

Screenshot of Beat the Heat: Tackling Urban Heat Islands Using the Science of Energy - Middle School

Beat the Heat: Tackling Urban Heat Islands Using the Science of Energy - Middle School

Lake City's latest heat wave has more people in the hospital than ever before. Juan, a local student admitted to the hospital, lives in one of the hottest neighborhoods in the city. Students are hired as the city's Chief Heat Officer to investigate and solve the problem. As the Chief Heat Officer, students look at land uses, surface air temperatures, and building materials across Lake City. Students will develop a system model to test several design solutions and give the mayor a proposal to beat the heat. Video Preview


Lesson Info
STEM Cases
Screenshot of Protecting Permafrost: Heat Transfer Highway - Middle School

Protecting Permafrost: Heat Transfer Highway - Middle School

Thawing permafrost threatens the stability of critical infrastructure in the Arctic community of Frostville, Alaska. Students take on the role of a civil engineer to design heat transfer solutions to protect permafrost in a warming climate. Video Preview


Lesson Info
STEM Cases
Screenshot of Sound Off, Please!: Designing Solutions to Reduce Noise Pollution - Middle School

Sound Off, Please!: Designing Solutions to Reduce Noise Pollution - Middle School

As an acoustic engineer, students will work with an urban planner to learn how noise pollution impacts a community. Students will develop a system model to test design solutions. Wave properties of sound and how sound interacts with different surfaces will be explored and used as evidence to reduce noise pollution. Video Preview


Lesson Info
STEM Cases

6-ETS1-2: : Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.


6-ETS1-2: : Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.

Screenshot of Digestive System

Digestive System

Digestion is a complex process, involving a wide variety of organs and chemicals that work together to break down food, absorb nutrients, and eliminate wastes. But have you ever wondered what would happen if some of those organs were eliminated, or if the sequence was changed? Can the digestive system be improved? Find out by designing your own digestive system with the Digestive System Gizmo. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Muscles and Bones

Muscles and Bones

See how muscles, bones, and connective tissue work together to allow movement. Observe how muscle contraction arises from the interactions of thin and thick filaments in muscle cells. Using what you have learned, construct an arm that can lift a weight or throw a ball. Connective tissue, muscle composition, bone length, and tendon insertion point can all be manipulated to create an arm to lift the heaviest weight or throw a ball the fastest. 5 Minute Preview


Lesson Info
Launch Gizmo

6-ETS1-3: : Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.


6-ETS1-3: : Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.

Screenshot of Protecting Permafrost: Heat Transfer Highway - Middle School

Protecting Permafrost: Heat Transfer Highway - Middle School

Thawing permafrost threatens the stability of critical infrastructure in the Arctic community of Frostville, Alaska. Students take on the role of a civil engineer to design heat transfer solutions to protect permafrost in a warming climate. Video Preview


Lesson Info
STEM Cases

6-ETS1-4: : Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.


6-ETS1-4: : Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

Screenshot of Beat the Heat: Tackling Urban Heat Islands Using the Science of Energy - Middle School

Beat the Heat: Tackling Urban Heat Islands Using the Science of Energy - Middle School

Lake City's latest heat wave has more people in the hospital than ever before. Juan, a local student admitted to the hospital, lives in one of the hottest neighborhoods in the city. Students are hired as the city's Chief Heat Officer to investigate and solve the problem. As the Chief Heat Officer, students look at land uses, surface air temperatures, and building materials across Lake City. Students will develop a system model to test several design solutions and give the mayor a proposal to beat the heat. Video Preview


Lesson Info
STEM Cases
Screenshot of Protecting Permafrost: Heat Transfer Highway - Middle School

Protecting Permafrost: Heat Transfer Highway - Middle School

Thawing permafrost threatens the stability of critical infrastructure in the Arctic community of Frostville, Alaska. Students take on the role of a civil engineer to design heat transfer solutions to protect permafrost in a warming climate. Video Preview


Lesson Info
STEM Cases
Screenshot of Sound Off, Please!: Designing Solutions to Reduce Noise Pollution - Middle School

Sound Off, Please!: Designing Solutions to Reduce Noise Pollution - Middle School

As an acoustic engineer, students will work with an urban planner to learn how noise pollution impacts a community. Students will develop a system model to test design solutions. Wave properties of sound and how sound interacts with different surfaces will be explored and used as evidence to reduce noise pollution. Video Preview


Lesson Info
STEM Cases

Correlation last revised: 10/6/2025

About STEM Cases

Students assume the role of a scientist trying to solve a real world problem. They use scientific practices to collect and analyze data, and form and test a hypothesis as they solve the problems.

Realtime reporting icon

Each STEM Case uses realtime reporting to show live student results.
Introduction to the Heatmap

Time icon

STEM Cases take between 30-90 minutes for students to complete, depending on the case.

Save icon

Student progress is automatically saved so that STEM Cases can be completed over multiple sessions.

Grades icon

Multiple grade-appropriate versions, or levels, exist for each STEM Case.

Handbook icon

Each STEM Case level has an associated Handbook. These are interactive guides that focus on the science concepts underlying the case.

STEM Case Help & Resources Sign Up for Free

How Free Gizmos Work

Gizmos icon

Start teaching with 20-40 Free Gizmos. See the full list.

Lesson materials list icon

Access lesson materials for Free Gizmos including teacher guides, lesson plans, and more.

Time icon

All other Gizmos are limited to a 5 Minute Preview and can only be used for 5 minutes a day.

Refresh icon

Free Gizmos change each semester. The new collection will be available Sep 01, 2022.

Sign Up for Free

Want More?

Check out these quick links.

  • Sign up for a FREE Trial!
  • Take a Tour
  • Get Help

Find Your Solution

Start playing, exploring and learning today with a free account. Or contact us for a quote or demo.

Sign Up For Free Get a Quote
Find Your Solution
Gizmos logo Brought to you by ExploreLearning

© 2025 ExploreLearning. All rights reserved. Gizmo and Gizmos are registered trademarks of ExploreLearning. STEM Cases, Handbooks and the associated Realtime Reporting System are protected by US Patent No. 10,410,534

Other Products

Reflex icon Frax icon Science4Us icon
Find Gizmos
  • FREE Gizmos
  • NEW Releases
  • STEM Cases
  • Browse by Standard
  • Browse by Grade & Topic
  • Browse by Core Curriculum
About Gizmos
  • What's a Gizmo?
  • About STEM Cases
  • Take a Tour
  • The Research Behind Gizmos
  • How to Get Gizmos
  • Testimonials
Research
  • The Impact of Gizmos on Student Achievement
Support
  • Professional Development Overview
  • Meet the Team
  • Course Catalog
  • Help Center
  • Site Status
Resources
  • Gizmos Educator Resource Hub
  • Success Stories
  • Insights
Get More Info
  • Sign Up for Free
  • Request Purchasing Info
  • Request a Demo
  • Contact Support

Get Connected

  • Support Form
  • Toll-Free 866-882-4141
  • Local +1-434-293-7043
  • Newsletter Sign-Up
  • Facebook
  • Twitter
  • LinkedIn
  • YouTube
  • Instagram

Other Products

Reflex icon Frax icon Science4Us icon

© 2025 ExploreLearning. All rights reserved. Gizmo and Gizmos are registered trademarks of ExploreLearning. STEM Cases, Handbooks and the associated Realtime Reporting System are protected by US Patent No. 10,410,534

  • Terms and Conditions
  • Privacy Policy
  • Accessibility
  • System Requirements
  • Sitemap